get complete pdf at learnexams.com

Student Exploration: Nuclear Reactions

[Note to teachers and students: This Gizmo was designed as a follow-up to the Nuclear Decay Gizmo. We recommend doing that activity before trying this one.

Vocabulary: chain reaction, CNO cycle, catalyst, deuterium, electron volt, fission, fusion, isotope, nuclear reaction, positron, positron emission, proton-proton chain

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

The chart to the right gives the **isotope** name, element name, number of protons, and number of neutrons of three isotopes.

1. What do you notice about the isotope number and the sum of protons and neutrons?

Isotope	Protons	Neutrons
Hydrogen-1	1	0
Carbon-12	6	6
Uranium-	92	143
235		

They all vary in numbers

2. The element symbol for uranium-238 is ⁹² . This means U-238 has a total mass of 238 and contains 92 protons. Write the element symbols for the isotopes in the table and Carbon-12 12/6 C Uranium-235 235/92 U

238

Gizmo Warm-up

The Nuclear Reactions Gizmo simulates a particle accelerator. Particle accelerators speed up atoms to very high velocities, then crash the atoms together with enough energy to cause changes called **nuclear reactions**. There are three particle beams available in this Gizmo, protons, neutrons, and helium-3 nuclei.

1. Click **Fire Proton** to engage the first particle beam.

What happens? A positron flew out

- 2. Colliding particles don't always react. Click Reset, and then click Fire neutron.
 - A. Does a reaction occur? no
 - B. Explain: the fire neutron flew through

Stuvia.com - The Marketplace to Buy and Sell your Study Material

get complete pdf at learnexams.com

Activity A: Proton-proton chain	 <u>Get the Gizmo ready</u>: Click Reset. Be sure Proton-proton is selected in the Reaction 	Proton Neutron
	menu.	

Introduction: All stars turn hydrogen into helium in a process called nuclear **fusion**. Stars perform this process in different ways. In stars like our sun, the **proton-proton chain** is used. This reaction requires temperatures greater than 4,000,000 K to occur.

Question: How does the process of fusion turn hydrogen into helium in stars?

1. Observe: Click **Fire proton** and observe. What happens after the proton

merges into the nucleus? A gamma is released

This is a form of nuclear decay called **positron emission**. During positron emission, a proton decays into a neutron. In this process, it emits a **positron**, which is a nearly massless antimatter particle with a positive charge.

2. <u>Observe</u>: Click **Reset** and click **Fire proton**. Observe what happens. Many subatomic particles appear frequently in nuclear reactions. Their element symbols are given below:

(Neutrinos

are also produced but are beyond the scope of this Gizmo.)

Click **Reset** and click **Fire proton**. Turn on the **Write equation** checkbox. Based on what you have observed, write in the equation for this reaction in the Gizmo and below.

1/0 n to 0/1 e+ plus 1/1 H

A. Turn on Show equation. Was your predicted equation correct? yes

Correct your equation if necessary. The resulting H-2 isotope is called **deuterium**.

B. Emitted energy is reported in megaelectron volts (MeV), where one MeV

